Package: birk (via r-universe)

August 23, 2024

Type Package Title MA Birk's Functions Version 2.1.2 Date 2016-07-27 Author Matthew A. Birk Maintainer Matthew A. Birk <matthewabirk@gmail.com> Description Collection of tools to make R more convenient. Includes tools to summarize data using statistics not available with base R and manipulate objects for analyses. Imports grDevices, stats License GPL-3 **Encoding** UTF-8 RoxygenNote 5.0.1 NeedsCompilation no Date/Publication 2016-07-27 07:56:39 Repository https://matthewabirk.r-universe.dev RemoteUrl https://github.com/cran/birk RemoteRef HEAD **RemoteSha** 24e8c23637fe365578b20c6854d85af788cc96a2

Contents

irk	2
onv_dim	2
onv_unit	3
onv_unit_options	5
eom_mean	5
nge_seq	7
εε	8
ımm_stat	8
hich.closest)

Index

birk

MA Birk's Functions

Description

Collection of tools to make R more convenient. Includes tools to summarize data using statistics not available with base R and manipulate objects for analyses.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

conv_dim

Convert Dimensions of Measurement

Description

DEPRECATED. Converts between dimensions of measurement given a transition dimension (the dimension that "bridges" x and y, e.g. liters per second, lbs per acre). Note that 2 of the 3 measurements (x, y, or trans) must be defined to calculate the 3rd. See conv_unit_options for all options.

Usage

conv_dim(x, x_unit, trans, trans_unit, y, y_unit)

Arguments

х	a numeric vector giving the measurement value in the first dimension.
x_unit	the unit in which x was measured.
trans	a numeric vector giving the measurement value in the transition dimension.
trans_unit	the unit in which trans was measured.
У	a numeric vector giving the measurement value in the second dimension.
y_unit	the unit in which y was measured.

Details

This function supports all dimensions in conv_unit_options except for coordinates. The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

11

conv_unit

Note

Duration Years are defined as 365.25 days and months are defined as 1/12 a year.

Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).

Flow All gallon-based units are US gallons.

Mass All non-metric units are based on the avoirdupois system.

Power hp is mechanical horsepower, or 745.69 W.

Speed mach is calculated at sea level at 15 °C.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

conv_unit_options, conv_unit

Examples

```
# How many minutes does it take to travel 100 meters at 3 feet per second?
conv_dim(x = 100, x_unit = "m", trans = 3, trans_unit = "ft_per_sec", y_unit = "min")
# How many degrees does the temperature increase with an increase in 4 kPa given 0.8 Celcius
```

increase per psi?

conv_dim(x_unit = "C", trans = 0.8, trans_unit = "C_per_psi", y = 4, y_unit = "kPa")

Find the densities given volume and mass measurements. conv_dim(x = c(60, 80), x_unit = "ft3", trans_unit = "kg_per_l", y = c(6e6, 4e6), y_unit = "g")

conv_unit

Convert Units of Measurement

Description

DEPRECATED. Converts common units of measurement for a variety of dimensions. See conv_unit_options for all options.

Usage

conv_unit(x, from, to)

Arguments

х	a numeric vector giving the measurement value in its original units.
from	the unit in which the measurement was made.
to	the unit to which the measurement is to be converted.

- Acceleration mm_per_sec2, cm_per_sec2, m_per_sec2, km_per_sec2, grav, inch_per_sec2, ft_per_sec2, mi_per_sec2, kph_per_sec, mph_per_sec
- Angle degree, radian, grad, arcmin, arcsec, turn
- Area nm2, um2, mm2, cm2, m2, hectare, km2, inch2, ft2, yd2, acre, mi2, naut_mi2
- **Coordinate** dec_deg, deg_dec_min, deg_min_sec (see note)

Count nmol, umol, mmol, mol

- Duration nsec, usec, msec, sec, min, hr, day, wk, mon, yr, dec, cen, mil, Ma
- Energy J, kJ, erg, cal, Cal, Wsec, kWh, MWh, BTU
- Flow ml_per_sec, ml_per_min, ml_per_hr, l_per_sec, l_per_min, l_per_hr, m3_per_sec, m3_per_min, m3_per_hr, gal_per_sec, gal_per_min, gal_per_hr, ft3_per_sec, ft3_per_min, ft3_per_hr, Sv
- Length angstrom, nm, um, mm, cm, dm, m, km, inch, ft, yd, fathom, mi, naut_mi, au, light_yr, parsec, point

Mass ug, mg, g, kg, Pg, carat, metric_ton, oz, lbs, short_ton, long_ton, stone

Power uW, mW, W, kW, MW, GW, erg_per_sec, cal_per_sec, cal_per_hr, Cal_per_sec, Cal_per_hr, BTU_per_sec, BTU_per_hr, hp

Pressure uatm, atm, Pa, hPa, kPa, torr, mmHg, inHg, mbar, bar, dbar, psi

Speed mm_per_sec, cm_per_sec, m_per_sec, km_per_sec, inch_per_sec, ft_per_sec, kph, mph, km_per_day, mi_per_day, knot, mach, light

Temperature C, F, K, R

Volume ul, ml, dl, l, cm3, dm3, m3, km3, us_tsp, us_tbsp, us_oz, us_cup, us_pint, us_quart, us_gal, inch3, ft3, mi3, imp_tsp, imp_tbsp, imp_oz, imp_cup, imp_pint, imp_quart, imp_gal

The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

Note

Duration Years are defined as 365.25 days and months are defined as 1/12 a year.

- **Coordinate** Values must be entered as a string with one space between subunits (e.g. $70^{\circ} 33' 11'' = "70 33 11"$).
- Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).

Flow All gallon-based units are US gallons.

Mass All non-metric units are based on the avoirdupois system.

Power hp is mechanical horsepower, or 745.69 W.

Speed mach is calculated at sea level at 15 °C.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

conv_unit_options

See Also

conv_unit_options, conv_dim

Examples

```
conv_unit(2.54, "cm", "inch") # Result = 1 inch
conv_unit(seq(1, 10), "kg", "short_ton") # A vector of measurement values can be converted
# Convert 1, 10, and 100 meters to all other length units
sapply(conv_unit_options$length, function(x) conv_unit(c(1, 10, 100), "m", x))
conv_unit("33 1 1", "deg_min_sec", "dec_deg")
conv_unit(c("101 44.32", "3 19.453"), "deg_dec_min", "deg_min_sec")
```

conv_unit_options Unit of Measurement Conversion Options

Description

DEPRECATED. Shows what units of measurement can be converted with the function conv_unit.

Usage

conv_unit_options

Format

A list with all units available for conversion using conv_unit.

Details

Duration Years are defined as 365.25 days and months are defined as 1/12 a year.

Coordinate Values must be entered as a string with one space between subunits (e.g. $70^{\circ} 33' 11'' = "70 33 11"$).

Energy cal is a thermochemical calorie (4.184 J) and Cal is 1000 cal (kcal or 4184 J).

Mass All non-metric units are based on the avoirdupois system.

Power hp is mechanical horsepower, or 745.69 W.

Speed mach is calculated at sea level at 15 °C.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

Source

The conversion values have been defined based primarily from international weight and measurement authorities (e.g. General Conference on Weights and Measures, International Committee for Weights and Measures, etc.). While much effort was made to make conversions as accurate as possible, you should check the accuracy of conversions to ensure that conversions are precise enough for your applications.

See Also

conv_unit

Examples

conv_unit_options
conv_unit_options\$pressure

geom_mean

Geometric Mean

Description

Computes the geometric mean of a vector, x. It is a wrapper for exp(mean(log(x))).

Usage

```
geom_mean(x, add0.001 = FALSE, ignore_neg = FALSE, ...)
```

Arguments

x	a numeric vector or an R object which is coercible to one by as.vector(x, "numeric").
add0.001	logical. Should a small constant (0.001) be added to avoid issues with zeroes?
ignore_neg	logical. Should negative values be ignored to avoid NaNs?
	further arguments passed to mean.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

mean

range_seq

Examples

```
geom_mean(1:10)
geom_mean(0:10)
geom_mean(0:10, add0.001 = TRUE)
geom_mean(-10:10, add0.001 = TRUE, ignore_neg = TRUE)
```

range_seq

Sequence Generation Spanning A Numerical Range

Description

Generates a sequence of numbers spanning the range of x.

Usage

range_seq(x, extend = 0, ...)

Arguments

х	a numeric vector.
extend	number specifying the fraction by which the range should be extended
	further arguments to be passed to seq.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

seq, extendrange

Examples

```
range_seq(rnorm(10, sd = 20))
range_seq(c(3, 9), extend = 0.1)
range_seq(c(3, 9), length.out = 20)
```

Description

Computes the standard error of the values in x. If na.rm is TRUE then missing values are removed before computation proceeds.

Usage

se(x, na.rm = FALSE)

Arguments

х	a numeric vector or an R object which is coercible to one by as.vector(x, "nu-
	meric").
na.rm	logical. Should missing values be removed?

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

sd, var

Examples

se(1:10)

summ_stat

Pooled Summary Descriptive Statistics

Description

Pools summary statistics when given mean and (optionally) a measurement of variability (choose one among var, sd, and se).

Usage

summ_stat(mean, n, var, sd, se)

se

which.closest

Arguments

mean	numeric. A vector of mean values to be pooled.
n	numeric. A vector of n values to be pooled.
var	numeric. A vector of variance values to be pooled.
sd	numeric. A vector of standard deviation values to be pooled.
se	numeric. A vector of standard error of the mean vlaues to be pooled.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

weighted.mean, se

Examples

```
summ_stat(mean = c(0.68, 0.67), n = c(4, 5), sd = c(0.11, 0.15))
summ_stat(mean = 0.68, n = 3, se = 5)
summ_stat(mean = rnorm(1e4), n = rep(1, 1e4)) # Find pooled mean when variability is unknown.
```

which.closest Where is the closest?

Description

Returns index of the closest value to x.

Usage

```
which.closest(vec, x)
```

Arguments

vec	a numeric vector.
х	numeric. The value for which the closest match should be returned.

Author(s)

Matthew A. Birk, <matthewabirk@gmail.com>

See Also

which.min, which.max

which.closest

Examples

which.closest(10:1, 3.3)

10

Index

```
* datasets
    \texttt{conv\_unit\_options, 5}
birk, 2
birk-package(birk), 2
conv_dim, 2, 5
conv_unit, 3, 3, 5, 6
conv_unit_options, 2, 3, 5, 5
extendrange, 7
geom_mean, 6
mean, 6
range_seq, 7
sd, <mark>8</mark>
se, 8, 9
seq, 7
summ_stat, 8
var,<mark>8</mark>
weighted.mean, 9
which.closest, 9
which.max, 9
which.min,9
```